空積

スポンサーリンク
半群

半群の直積

\(S_1,S_2\) を半群とする. 集合としての直積 \[S_1\times S_2=\left\{\ (s_1,s_2)\ |\ s_1\in S_1,\ s_2\in S_2\ \right\}\] 上に二項演算 \(\cdot\) を \((s_1,s_2),\ (s_1^\prime,s_2^\prime)\in S_1\times S_2\) に対して \[ (s_1,s_2)\cdot (s_1^\prime,s_2^\prime)=(s_1s_1^\prime,s_2s_2^\prime) \] で定義すると \(S_1\times S_2\) は半群となる. この半群を \(S_1,S_2\) の直積(direct product)という.

群の直積

\(G_1,G_2\) を群として, \(e_1,e_2\) をそれぞれの単位元とする. 集合としての直積 \[G_1\times G_2=\left\{\ (g_1,g_2)\ |\ g_1\in G_1,\ g_2\in G_2\ \right\}\] 上に二項演算 \(\cdot\)を \((g_1,g_2),\ (g_1^\prime,g_2^\prime)\in G_1\times G_2\) に対して \[(g_1,g_2)\cdot (g_1^\prime,g_2^\prime)=(g_1g_1^\prime,g_2g_2^\prime)\] で定義すると \(G_1\times G_2\) は群となる.この群を \(G_1,G_2\) の直積(direct product)という.

環の直積

\(R_1,R_2\) を環として, \(0_1,0_2\) をそれぞれの零元, \(1_1,1_2\) をそれぞれの単位元とする. 集合としての直積 \[R_1\times R_2=\left\{\ (r_1,r_2)\ |\ r_1\in R_1,\ r_2\in R_2\ \right\}\] 上に二項演算 \(+\) と \(\cdot\) を \((r_1,r_2),\ (r_1^\prime,r_2^\prime)\in R_1\times R_2\) に対して \[ (r_1,r_2)+(r_1^\prime,r_2^\prime)=(r_1+r_1^\prime,r_2+r_2^\prime)\\ (r_1,r_2)\cdot (r_1^\prime,r_2^\prime)=(r_1r_1^\prime,r_2r_2^\prime) \] で定義すると \(R_1\times R_2\) は環となる. この環を \(R_1,R_2\) の直積(direct product)という. \(R_1\times R_2\) の零元は \((0_1,0_2)\), 単位元は \((1_1,1_2)\) である.
半環

半環の直積

\(S_1,S_2\) を半環として, \(0_1,0_2\) をそれぞれの零元, \(1_1,1_2\) をそれぞれの単位元とする. 集合としての直積 \[S_1\times S_2=\left\{\ (s_1,s_2)\ |\ s_1\in S_1,\ s_2\in S_2\ \right\}\] 上に二項演算 \(+\) と \(\cdot\) を \((s_1,s_2),\ (s_1^\prime,s_2^\prime)\in S_1\times S_2\) に対して \[ (s_1,s_2)+(s_1^\prime,s_2^\prime)=(s_1+s_1^\prime,s_2+s_2^\prime)\\ (s_1,s_2)\cdot (s_1^\prime,s_2^\prime)=(s_1s_1^\prime,s_2s_2^\prime) \] で定義すると \(S_1\times S_2\) は半環となる. この半環を \(S_1,S_2\) の直積(direct product)という. \(S_1\times S_2\) の零元は \((0_1,0_2)\), 単位元は \((1_1,1_2)\) である.
スポンサーリンク