可換環

スポンサーリンク

極大イデアル

可換環 \(R\) のイデアル \(I\) が, \(I\neq S\) かつ,イデアル \(J\) に対して \[I\subset J\subset R\Longrightarrow J=I\ \ {\rm or}\ \ J=R\] を満たすとき, \(I\) を \(R\) の極大イデアル(maximal ideal)という.

素イデアル

可換環 \(R\) のイデアル \(I\) が, \(I\neq S\) かつ \[a,b\in R,\ ab\in I\Longrightarrow a\in I\ \ {\rm or}\ \ b\in I\] を満たすとき, \(I\) を \(R\) の素イデアル(prime ideal)という.

商体

\(R\) を可換な整域とする. \(S=R\,\backslash\{0\}\) とすると \(S\) は積閉集合である. この \(S\) による局所化 \(S^{-1}R\) は \(R\) を含む最小の体となり,\(R\) の商体や分数体と呼ばれる. また, \(\mathrm{Q}(R), \mathrm{Quot}(R),\mathrm{Frac}(R)\) のように書いたりする.

1変数多項式環

\(R\) 係数の \(X\) に関する多項式全体の集合を \(R[X]\) と書き, \(R\) 上の1変数多項式環(polynomial ring in one variable) という.

整域

可換環Rが0以外に零因子を持たないとき,Rを整域(integral domain)という. 整数環 \(\mathbf{Z}\) は整域です。

局所化

\(R\) を可換環, \(S\) を \(R\) の積閉集合とする.\((a,s), (b,t) \in R\times S\) に対して, ある \(u\in S\) が存在して \(u(at-bs)=0\) となるとき \((a,s)\sim (b,t)\) と定義すると \(\sim\) は \(R\times S\) 上の同値関係となる.

剰余環

環 \(R\) とその両側イデアル \(I\) に対して, \(R\) 上の関係 \(\sim_I\) を \[a\sim_I b \Longleftrightarrow a-b\in I\] で定義すると \(\sim_I\) は同値関係となる. 同値類の集合 \(R/\sim_I\) を \(R/I\) と書く.

イデアル

環Rの部分集合Iが \(a,b\in I\ \Longrightarrow\ -a+b\in I\) \(a\in I,\ x\in R\ \Longrightarrow\ xa\in I\) を満たすとき,IをRの左イデアル(left ideal)という.

環の準同型写像

2つの環 R,R^\primeに対して, 写像 f\colon R \to R^\primeが任意のx, y\in Rと単位元 1\in R, 1^\prime\in R^\primeに対して f(xy)=f(x)f(y), f(x+y)=f(x)+f(y), f(1)=1^\primeを満たすとき, fをR,\ R^\prime間の環準同型写像(ring homomorphism)または単に準同型写像(homomorphism)という.

部分環

群Rの空ではない部分集合Sが, Rの二項演算で環になるとき, SをRの部分環(subring)という.また,Rの零元からなる集合{0}とR自身はRの部分環であり, これらを自明な部分環(trivial subring)と呼ぶ.
スポンサーリンク